
HW 10: Data Visualization I
Graphical Analysis of Biological Data

By the end of this assignment, you should be able to achieve the following tasks in R:

• use R notebooks and R markdown;
• insert, write, and evaluate code chucks;
• use pipes;
• produce plots with ggplot2;
• visually analyze data for

– outliers,
– normality,
– relationships among variables, and
– interactions.

• use a typical workflow to wrangle and plot data;
• write custom functions, and
• confidently stage, commit, and push with Git.

These achievements belong to Learning Outcomes 2, 3, 4, 5, 6.

Click on any blue text to visit the external website.

Note: If you contact me for help or (better yet) open an issue in the public discussion forum, please include
the code that is not working and also tell me what you have tried.

Preparation

• Open your .Rproj project file in RStudio.

• Create an hw10 folder inside the same folder as your project file.

• Create a new notebook file called <lastname>_10.Rmd. Edit the YAML file as you have for previous
assignments. Save this inside your hw10 folder.

• Right-click and save sparrows.txt to your data folder.

• Install the GGally and the patchwork packages. Do not include the installation code in your
notebook. Install from the console or the Tools menu.

• Add a code chunk to load the tidyverse, here, ggally, and patchwork libraries.

• Remember to format your code properly.

• Commit early. Commit often. Push regularly but at least push your completed assignment.

• Download and open A protocol for data exploration to avoid common statistical problems (free access)
by Zuur et al. 2010.

The Zuur et al. 2010. paper outlines a series of steps that should be performed always on a data set before
your real analysis begins. You must have a feel for the "structure* of the data, identify outliers, and so on.
The purpose of this exercise is to help you learn how to do these essential steps in R.

1

https://github.com/SEMO-GABD/public_discussion
https://raw.githubusercontent.com/SEMO-GABD/semo-gabd.github.io/master/assignments/hw10/sparrows.txt
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2009.00001.x
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2009.00001.x

You will recreate Figures 2, 3, 5, 10, and 11 from the Zuur et al. 2010. paper. You will learn some ggplot
tricks along the way. I will show you most of the code, which I expect you to type in to the R Notebook you
just created and run it. Study the code because you will have to apply it in the next assignment. In a few
cases, I will not give you the code because you should know what to do by now. I will just tell you what to
do. Like this.

Import and wrangle

• Import sparrow.txt. I will leave it to you to figure out if the data are comma-delimited or tab-delimited
to choose the proper import function. I imported the raw data into a variable called sparrow_raw,
which I leave unmodified. Reemeber to use here to import the data from your data folder.

• A good idea is to View() the imported data to be sure the data look like they were properly imported.
Run this from the console or click the Environment tab (upper right pane) and then click on the data
set name.

The sparrows.txt data set has morphometric measurements for 1295 Saltmarsh Sparrows, gathered by
Gjerdrum et al. 2008

The first step is to create two new columns in the sparrow dataset. The box_group column contains a
single arbitrary value. We’ll use “Sparrows” because it will make sense when we plot. We have to do this
step because geom_boxplot requires that data be mapped to the x-axis. If we used something like Sex or
SpeciesCode, we would end up with more than one boxplot. In most circumstances, we would do that but,
because the goal is to mimic Zuur’s figure 2, we have to use a dummy variable.

The row_order = 1:nrow(.) creates another dummy variable that we need. The nrow() function returns
the number of rows in a data frame. The . tells nrow() to use the sparrows_raw dataframe that was piped
in. The result is that row_order column will have a sequence of numbers from 1 to 1265, the number of
rows in the sparrows data set. We’ll save the result in a new tibble called sparrows. I use this tibble for the
remaining steps. If we screw up, we can start fresh from the sparrows_raw data.
sparrows <- sparrows_raw %>%

mutate(box_group = "Sparrows",
row_order = 1:nrow(.))

You should run View(sparrows) to ensure that you have both columns.

Figure 2: outliers

From here on, all references to figures will be to the Zuur et al. paper that I told you to download and open.
You do have that open, right?

The left panel of Figure 2 shows a box plot of wing length (mm) for the entire data set. wingcrd is the
column with wing length. Enter and run this code to generate the boxplot. Notice our code is using the
box_group dummy variable. Our plot is identical to the Zuur plot except for some details.
sparrows %>%

ggplot(aes(x = box_group,
y = wingcrd)) +

geom_boxplot(width = 0.25) +
labs(x = NULL,

y = "Wing length (mm)")

2

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2009.00001.x
https://www.jstor.org/stable/pdf/10.1525/auk.2008.07029.pdf

55

60

65

Sparrows

W
in

g
le

ng
th

 (
m

m
)

The box plot identified possible outliers because the data points fall outside of the 1.5 * interquartile range.
Outliers usually have values very different from most other values. In this boxplot, the outlier points are just
beyond the whiskers, suggesting that the “outliers” may not be that different from the other values.

The full range of values can be assessed with a Cleveland dot plot, as shown in the right panel.
sparrows %>%

ggplot(aes(x = wingcrd,
y = row_order)) +

geom_point() +
labs(x = "Wing length (mm)",

y = "Order of the data")

3

0

500

1000

55 60 65
Wing length (mm)

O
rd

er
 o

f t
he

 d
at

a

To finish recreating the figure, we need to store our two plots as separate objects, then take advantage of
patchwork to put our two plots together. Plots made by ggplot are actually R list structures, which means
plots can be stored in variables.

We want to store our first two plots in separate variables. For simplicity, we’ll call them plot_box and
plot_cleveland. Go back to the previous code chunks so that they store the results in their respective
variables. When you are finished, they should look this this.

When you run the code, you will not see the plots but they are stored in their variables. You can see that by
entering plot_box or plot_cleveland on lines by themselves.

Before you move further, look at the examples on the patchwork GitHub page (scroll down). The first
example shows what we want to do: put two plots side-by-side. In the example, the two plots were stored as
p1 and p2, respectively. To plot them side-by-side, they used p1 + p2.

We just substitute our two plot names in the same fashion.
plot_box + plot_cleveland

4

https://github.com/thomasp85/patchwork

55

60

65

Sparrows

W
in

g
le

ng
th

 (
m

m
)

0

500

1000

55 60 65
Wing length (mm)

O
rd

er
 o

f t
he

 d
at

a

Bingo! We’ve recreated Figure 2. Unfortunately, the wing lengths are shown on the y-axis of the boxplot
but the x-axis of the Cleveland plot. The authors note in the figure legend that it can be helpful to have
the axes aligned. We will take advantage of ggplot layers to make a very simple improvement, by adding a
coord_flip layer.
plot_box + plot_cleveland + coord_flip()

5

55

60

65

Sparrows

W
in

g
le

ng
th

 (
m

m
)

55

60

65

0 500 1000
Order of the data

W
in

g
le

ng
th

 (
m

m
)

Comparison shows that the longest wing (row 536) is not very different at all from the other long wings.
Similarly, the shortest wing outlier is not very different from the other short wings. That suggests these data
are okay to include in subsequent analyses.

Figure 3: outliers

A good scientist such as yourself will look at every variable in the data set to search for outliers. Figure 3
shows six more variables from the sparrows data set.

Before we begin, look again at the patchwork examples. You can add a plot_layout(ncol =) layer to
specify the number of columns. (You could also use nrow.) Figure 3 has three columns in two rows. For
example, if we wanted Figure 2 to place one graph above the other, we have run plot_box + plot_cleveland
+ plot_layout(ncol = 1)

An assignment

You are to write a single chunk of code that makes the six graphs shown in Figure 3 and lays them out as
shown. I will start you off with the code for the upper left panel (Culmen length). You can adjust the code
accordingly. Include but do not worry about the theme() lines. They remove the y-axis information which
we do not need. Notice that I use p_<variable> to indicate the name of each saved plot. For example, the
first variable is culmen so I saved the plot as p_culmen.

While I encourage you to type every example, you have my permission to copy and paste, and then adjust the
variables as necessary. I suggest you run each plot independently first to be sure it matches the corresponding
panel in Figure 3 before assembling them into the final figure.
p_culmen <- sparrows %>%

ggplot(aes(y = row_order)) +
geom_point(aes(x = culmen)) +
theme(axis.title.y=element_blank(),

6

https://github.com/thomasp85/patchwork

axis.text.y=element_blank(),
axis.ticks.y=element_blank())

The other five variables are nalospi, wt, wingcrd, tarsus, and head. Make a new code chunk and
include the code above plus the code to produce the other five graphs, and then lay them out
as shown in the figure. If successful, your plot should look like this.

9 11 13 15
culmen

10 15
nalospi

10 15 20 25
wt

55 60 65
wingcrd

21 24 27 30
tarsus

24 28 32 36
head

Question: Which three variables appear to have outlier data?

Figure 5: distribution

The histogram in left panel of Figure 5 shows the number of indivdiuals in each “bin”, or weight class of birds.
In their figure, each bin is 0.5 grams wide. For example, notice there are four bins (or columns) between 18
and 20. The first bin includes weights from 18.1-18.5 g. The second bin includes weights from 18.5-19.0 g.
The third bin includes weights from 191.-19.5 g. The fourth bin includes weights from 19.6-20.0 g.

The number you use for the binwidth argument depends on the precision of your measurements. If you have
weight measurements in 100s of grams, then binwidths of 250 or 500 or even larger may be appropriate. If
your units of measurements are around 0.01, then bin widths of 0.05 or 0.1 or 0.25 might be more effective.
You usually have to play around with the binwidth to find bins that make sense.

Note: I used the scale_x_continuous() layer to manually set the x-axis scale to mimic the figure. seq(14,
28, by = 2) generates a sequence of numbers from 14 to 28 in increments of 2; i.e., 14, 16, 18, . . . , 28. You
are not requierd to use this option in your plots. If you do, the first number in the seq() funtion will be the
left most number on the x-axis. The second number will be the right-most number, and by = will be the
incremement.
Histogram
h1 <- sparrows %>%

7

filter(Month %in% 6:8) %>%
ggplot() +
geom_histogram(aes(x = wt),

binwidth = 0.5,
boundary = 0,
closed = "right",
color = "black") +

scale_x_continuous(breaks = seq(14, 28, by = 2))

Now we have to create the right panel. This code filters out all months except 6, 7, or 8, then mutates the
numbers to the month names. facet_wrap() arranges the plots alphabetically. We get lucky here because
the alphabetical order of June, July, and August correspond to their calendar order. Below, we will have to
set the order using factors.
Faceted Histogram
h2 <- sparrows %>%

filter(Month %in% 6:8) %>%
mutate(Month = case_when(

Month == 6 ~ "June",
Month == 7 ~ "July",
Month == 8 ~ "August")) %>%

ggplot() +
geom_histogram(aes(x = wt),

binwidth = 0.5,
boundary = 0,
color = "black") +

scale_x_continuous(breaks = seq(14, 28, by = 2)) +
facet_wrap(~ Month, ncol = 1)

Finally, we assemble the two plots into a single figure with patchwork.
h1 + h2

8

0

50

100

150

14 16 18 20 22 24 26 28
wt

co
un

t

June

July

August

14 16 18 20 22 24 26 28

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

wt

co
un

t

Grad and Honors: Recreate this figure using density plots. However, modify the right panel so that all
three months are overlaid on the same plot. Go back to the notes and follow the example code for guidance.
Ensure that the guide legend Month shows only for color, not alpha or other mappings.

9

../../notes/notes10.html

Figure 10: Relationships

You have used scatterplots, like this scatterplot of petal length versus sepal length for three species of Iris. .

5

6

7

8

2 4 6
Petal Length (cm)

S
ep

al
 L

en
gt

h
(c

m
)

Species

setosa

versicolor

virginica

Scatterplots are useful for showing the relationship between two variables. The scatterplot above shows a
positive linear relationship between the length of petals and sepals. Individuals (and species) with longer
petals tend to have longer sepals. Taken together, those individuals tend to have larger flowers.

Another essential step in any graphical analysis of data is to explore relationships among the variables, like
that shown by Figure 10. The panels above the diagonal are scatterplots that show pairwise relationships
between the continuous variables in the sparrow data. The intersection of a row with a column shows the
scatterplot for a specific pair of variables. The panels below the diagonal shows the Pearson correlation
coefficients, r. The coefficients range from 0 to 1. Higher values indicate stronger relationships between the
two variables.

Writing the code for dozens of scatterplots could grow tedious quickly, even with copy and paste. You have
to ensure you changed each of the variables correctly. Fortunately, the GGally package provides the ggpairs
function.

We will use the columns argument of ggpairs to specify the first seven columns of data. If you want to plot
all columns (helpful but not always wise), you do not have to supply the columns argument.
sparrows %>% ggpairs(columns = 1:7)

10

http://ggobi.github.io/ggally/
http://ggobi.github.io/ggally/articles/ggpairs.html

Corr:

0.987***

Corr:

0.526***

Corr:

0.522***

Corr:

0.515***

Corr:

0.515***

Corr:

0.505***

Corr:

0.439***

Corr:

0.436***

Corr:

0.515***

Corr:

0.713***

Corr:

0.390***

Corr:

0.394***

Corr:

0.494***

Corr:

0.698***

Corr:

0.726***

Corr:

0.632***

Corr:

0.626***

Corr:

0.546***

Corr:

0.619***

Corr:

0.558***

Corr:

0.522***

wingcrd flatwing tarsus head culmen nalospi wt
w

ingcrd
flatw

ing
tarsus

head
culm

en
nalospi

w
t

55 60 65 55 60 65 21 24 27 30 24 28 32 36 9 11 13 15 10 15 10 15 20 25

0.00
0.05
0.10
0.15

55
60
65

21
24
27
30

24
28
32
36

9
11
13
15

10
15

10
15
20
25

ggpairs includes a density plot on the diagonal and puts the scatterplots below the diagonal, but we otherwise
recreated Figure 10 with a single line of code. Niiiice.

Figure 11: interactions

Interaction effects among independent variables that affect the dependent variables can confound a statistical
analysis. For example, assume you are studying growth rate and time to sexual maturity in a territorial
species. In many species, males grow faster to be able to defend a territory sooner but at the cost of delayed
sexual maturity. Male energy is directed toward growth rather than reproduction early in life. In contrast,
females might become sexually mature more quickly but at the cost of smaller body size. This represents an
interaction between sex and energy investment that influences growth rate and time to sexual maturity.

Run the code below to show the interaction between sex and season (months). A few things about the code.
filter is keeping only months 5-9 (May through September) and removing immature individuals (coded as
0). mutate changes the months from numbers to ordered names (factors) so that the month names appear in
proper order as columns. geom_smooth uses method = "lm" (linear model) to add the trend line, and se =
FALSE removes the default standard error shading around the trend line.

Note: The code here uses the factor() function just like you have used in Base R, but we convert Months
to factors as part of mutate().
month_order = c("May", "June", "July", "August", "September")
sparrows %>%

filter(Month %in% 5:9,
Sex != 0) %>%

mutate(Month = case_when(
Month == 5 ~ "May",
Month == 6 ~ "June",

11

https://pages.uoregon.edu/stevensj/interaction.pdf

Month == 7 ~ "July",
Month == 8 ~ "August",
Month == 9 ~ "September"),
Month = factor(Month, levels = month_order, ordered = TRUE),
Sex = ifelse(Sex == 4, "Male", "Female")) %>%

ggplot(aes(x = wingcrd,
y = wt)) +

geom_point() +
geom_smooth(method = "lm", se = FALSE) +
facet_grid(Sex ~ Month)

May June July August September

F
em

ale
M

ale

55 60 65 55 60 65 55 60 65 55 60 65 55 60 65

18

21

24

27

18

21

24

27

wingcrd

w
t

If trend lines are parallel, or roughly so, then interaction effects are probably absent or not significant. In
the figure above, male and female weights trend in opposite directions during May. This could be because
females are producing eggs and males are more aggressively defending terroritories, gathering nest material, or
something else. However, as noted in the text, the sample sizes for May are very small, so the best approach
would be to gather more data if possible. If collecting additional data is not possile, then that result should
be interepreted cautiously.

You are now armed with some of the skills and tools needed for the first stages of robust data analysis. Put
your new skills to test in the next assignment.

et Vóila

12

	Preparation
	Import and wrangle
	Figure 2: outliers
	Figure 3: outliers
	Figure 5: distribution
	Figure 10: Relationships
	Figure 11: interactions

