
HW 13: Strings and things
Graphical Analysis of Biological Data

By the end of this assignment, you should be able to achieve the following tasks in R:

• use R notebooks and R markdown;
• insert, write, and evaluate code chucks;
• use pipes;
• manipulate strings using string functions,
• use regular expressions to work with complex strings, and
• produce plots with ggplot2;
• customize plots to improve visualization.
• use a typical workflow to wrangle and plot data;
• confidently stage, commit, and push with Git.

These achievements belong to Learning Outcomes 2, 3, 4, 5, 6.

Click on any blue text to visit the external website.

This assignment has four parts.

Note: If you cannot get your code to run, open an issue in the public discussion forum,, and describe the
problem. Include the code that is not working and also tell me what you have tried.

Preparation

• Read R4ds Chapter 14: Strings sections 1-4 for reference. You are not required to run the examples or
answer questions. BUT! I suggest you at least run the examples and answer the questions for section
14.3 and section 14.4. You will be glad you did when it comes time to work with regex patterns.

• Read R4ds Chapter 12.4.1: Separate for details of separating a single column into multiple columns.

• Read R4ds Chapter 13.4: Mutating joins for details of how to merge two tibbles. You will use an inner
join later.

• Read R4ds Chapter 28: Graphics for communication for reference.

• Open your .Rproj project file in RStudio.

• Right-click and save these files to your data folder.

– beta_gliadin.txt
– ants.csv
– flower_size.csv
– flower_pollinators.csv

• Create an hw13 folder inside the same folder as your project file.

• Add the YAML header as usual.

• Install the ggthemes and gghighlight packages. Do I have to tell you to not include the code in your
notebook?

• Load the tidyverse, here, ggthemes, and gghighlight libraries.

1

https://github.com/SEMO-GABD/public_discussion
https://r4ds.had.co.nz/strings.html
https://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions
https://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions
https://r4ds.had.co.nz/strings.html#tools
https://r4ds.had.co.nz/tidy-data.html#separate
https://r4ds.had.co.nz/relational-data.html#mutating-joins
https://r4ds.had.co.nz/graphics-for-communication.html
https://raw.githubusercontent.com/SEMO-GABD/semo-gabd.github.io/master/assignments/hw13/beta_gliadin.txt
https://raw.githubusercontent.com/SEMO-GABD/semo-gabd.github.io/master/assignments/hw13/ants.csv
https://github.com/SEMO-GABD/semo-gabd.github.io/raw/master/assignments/hw13/flower_size.csv
https://github.com/SEMO-GABD/semo-gabd.github.io/raw/master/assignments/hw13/flower_pollinators.csv

• Install the RColorBrewer and viridis packages. Do not load them. ggplot will use these for some
color palettes.

• Be sure your code format follows the guidelines.

• Commit early. Commit often. Push regularly.

• Stringr cheatsheet

• Regular expression cheatsheet

• Data visualization cheatsheet I’ve linked to this cheatsheet before.

Save the results from step to step except where noted.

Part 1: DNA strings

Gluten is a wheat protein that gives bread its structure. Gluten is composed of two smaller classes of proteins,
glutenins and gliadins. Gliadins are a primary trigger of Celiac’s Disease. For this assignment, you will
import a text file with DNA sequence from β-gliadin Genbank Accession K03075.1. The sequence contains
the entire gene plus the flanking regions up- and downstream of the gene.

You will use stringr functions and regular expressions (regex) to identify the promotor region just upstream
from the start of the gene.

Import the data

• Import beta_gliadin.txt using the read_lines() function. Skip the first line. read_lines just
reads in the raw text. Each line is treated as a distinct string.

• Print the imported data to get a sense of the format. Here are the first six lines. Yours should look the
same.

[1] "\t\t1 aatttgacat gcacagctcc tgaccctgcc aatattgttg cagctgcgct cgcaagcctt"
[2] " 61 tgcgtagatg atcactttat atgatttgtg taaaaccaaa ataagatcta caaacgaata"
[3] " 121 gaagctagag cgtaccttgg cgtgcacaca cattgcaagc catacctaac cttgataagt"
[4] " 181 gttaatgact tgtacaacat atacatcact taagacaagt aaaagcgatt tgatgagtca"
[5] " 241 tggtctatca aagcaagcca cattactagt ctaatccatc ttaacaggtc acgcatgatt"
[6] " 301 acaatcttgt ttgtgtgcaa gtcaagccta tctagtttac acgtaacaac ttgtaagaac"

From many strings to one

Each line of the text is a single string. Each string contains the DNA sequence and unwanted spaces, tabs
(\t) and numbers. The unwanted characters will be removed by the next several steps, which you can do in
any order. You will need to use str_replace_all and regular expressions. The stringr and regex cheatsheets
show some helpful shortcuts to represent whitespace and digits. So does the text.

• Replace all of the whitespace with nothing.

• Replace all of the digits with nothing.

• Print the results. You should have 56 strings. Here are the first six

[1] "aatttgacatgcacagctcctgaccctgccaatattgttgcagctgcgctcgcaagcctt"
[2] "tgcgtagatgatcactttatatgatttgtgtaaaaccaaaataagatctacaaacgaata"
[3] "gaagctagagcgtaccttggcgtgcacacacattgcaagccatacctaaccttgataagt"
[4] "gttaatgacttgtacaacatatacatcacttaagacaagtaaaagcgatttgatgagtca"

2

https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://github.com/rstudio/cheatsheets/raw/master/regex.pdf
https://github.com/rstudio/cheatsheets/raw/master/data-visualization-2.1.pdf
https://www.sciencedirect.com/topics/medicine-and-dentistry/gliadin
https://www.ncbi.nlm.nih.gov/nuccore/K03075.1
https://www.nature.com/scitable/definition/promoter-259
https://github.com/rstudio/cheatsheets/raw/master/strings.pdf
https://github.com/rstudio/cheatsheets/raw/master/regex.pdf
https://r4ds.had.co.nz/strings.html#character-classes-and-alternatives

[5] "tggtctatcaaagcaagccacattactagtctaatccatcttaacaggtcacgcatgatt"
[6] "acaatcttgtttgtgtgcaagtcaagcctatctagtttacacgtaacaacttgtaagaac"

• Use str_c to collapse the strings. Print the variable to ensure you have just one string. Here are the
first 100 characters.

[1] "aatttgacatgcacagctcctgaccctgccaatattgttgcagctgcgctcgcaagcctttgcgtagatgatcactttatatgatttgtgtaaaaccaaa"

This would also be a good time to stage and commit. And push it.

DNA sequence is typically represented in upper case letters.

• Convert it to upper case with str_to_upper().

• str_length() returns the length of a string. How long is the total DNA sequence? You should get
3310 characters. If not, try to figure out where you went wrong.

Do not save the results of any string length calculations.

Sequence analysis: find the promoter region

These steps will identify the part of the promoter region immediately upstream of the start codon (ATG) of
the β-gliadin gene.

DNA consists of four nucleotides, A, C, G, and T. However, the nucleotides in a sequence cannot always be
identified positively. Nucleotides that could not be identified are represented by other letters, standardize by
the IUPAC. The letters most commonly used are Y (pyrimidines, C and T), R (purines, A and G), and N
(any of the four DNA nucleotides), but there are others, as shown in the list linked above.

• Use str_count() and regex to count the number of IUPAC letters in the sequence that are not A, C,
G, or T. Hint: I just gave you one.

Do not save the result of any string counts.

The start codon for nuclear genes is ATG and the stop codon is either TGA or TAA.

• Count how many possible start codons are in the sequence.

• Count how many possible stop codons are located in the sequence. For full credit, I’ll be more impressed
if you search for both stop codons with a single regular expression. Hint: |

Well, isn’t that special? The DNA sequence contains 66 start codons and 99 stop codons. That’s too many
to work with directly.

• Stage, commit and push.

Let’s find the promotor region that is just upstream from the true start codon. The promoter region for
many eukaryotic genes have two distinctive motifs, or short sequences that are important for transcription.
The first motif is the “CAAT box” and has a sequence of CCAAT. The second motif is the “TATA box” and
has a sequence of CTATAA. 1

• Assign the two motif sequences to variables caat_box and tata_box, respectively.

• Count how many times each of these motifs occurs in the DNA sequence.

The CAAT box occurs 4 times. The TATA box occurs 1 time. The TATA box should be associated with one
of the CAAT boxes.

Comparisons of multiple nuclear genes have shown that the CAAT box is usually within 100-150 nucleotides
of the start codon. The TATA box tends to be within 50-100 nucleotides of the start codon (at least in
gliadin genes).

1The motifs are slightly variable among eukaryotes but these are the specific sequences in this promoter region.

3

https://www.youtube.com/watch?v=vCadcBR95oU
https://www.bioinformatics.org/sms/iupac.html
https://iupac.org

• Make a regex search string called caat_seq that begins with “CCAAT”, ends with “ATG”", and allows
for a stretch of 100-150 nucleotides between the two. Recall the {min, max} example from the notes.

• Count how many times this possible sequence occurs.

Cool. You cut your candidate CAAT boxes in half.

• Make a regex search string called tata_seq that begins with “CTATAA”, ends with “ATG”, and allows
for a stretch of 50-100 nucleotides between the two. Think about this carefully.

• Count how many times this possible sequence occurs.

Your searches found twice as many caat_seq as tata_seq in the DNA sequence. The next step is to determine
which, if any, caat_seq sequences have a tata_seq sequence.

• Use str_extract_all to extract all of the caat_seq sequences and save them in a variable called
caat_seqs_all. Use the simplify = TRUE argument in your function call (?str_extract_all for
help).

• How long is each extracted sequence? Make a mental note of the length of each one. You should have
two sequences that differ in length by nine nucleotides.

[1] 139 148

• Use str_which() to find which caat_seq has the tata_box sequence. Use that value to extract the
full promotor sequence into a variable called promotor.

• Print promotor and determine it’s length.

[1] "CCAATTGTGAAAGAGATCATGCCATGACAGCTATAAATAGGCCCGCATCGATGATGATCATCCTTCCTCATCCATCATTCTCATAAGTAGAGTGCATCATTCAAGGCAAGCAAGCAGTGGTCAATACAAATCCATCATG"

It should be the sequence that matches that shown and is 139 nucleotides long.

• Stage, commit, and push.

For fun, compare your promoter sequence to the GenBank sequence. Scroll down to “FEATURES”, and then
click on the CDS link. The last three nucleotides of your sequence are the first three nucleotides highlighted.
If you start working upstream (to the left), you will find your promoter sequence.

Part 2: Ants

Wood and her students (unpubl.) studied how managed habitat burn strategies affected ant communities.
The first steps of the analyses involved gathering the data and shortening the species names for plotting.

The purpose here is two-fold. First, I want to show you a different way to identify columns for gathering.
You could hard-code the column names but that is not efficient. What if species were forgotten? Or deleted?
What if names changed? These and more are all possible.

While no code is perfect, regular expression are a powerful tool that allows your code to work under the
greatest range of circumstances.

Import the data

• Import ants.csv and print the first few rows.

A tibble: 6 x 27
year season seas.code trt plot sample Aphaenogaster.t~ Brachymyrmex.de~
<dbl> <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
1 2010 May 1 Pre-~ 6A 1 0 1

4

../../notes/notes13.html
https://www.ncbi.nlm.nih.gov/nuccore/K03075.1

2 2010 May 1 Pre-~ 6A 2 0 0
3 2010 May 1 Pre-~ 6A 3 0 0
4 2010 May 1 Pre-~ 6A 4 0 0
5 2010 May 1 Pre-~ 6A 5 0 1
6 2010 May 1 Pre-~ 6A 6 0 0
... with 19 more variables: Camponotus.castaneus <dbl>,
Crematogaster.cerasi <dbl>, Crematogaster.lineolata <dbl>,
Crematogaster.missuriensis <dbl>, Dolichoderus.plagiatus <dbl>,
Dorymyrmex.flavus <dbl>, Forelius.pruinosus <dbl>, Formica.dolosa <dbl>,
Hypoponera.opacior <dbl>, Monomorium.minimum <dbl>,
Neivamyrmex.nigrescens <dbl>, Neivamyrmex.opacithorax <dbl>,
Nylanderia.terricola <dbl>, Nylanderia.trageri <dbl>,
Pheidole.morrisi <dbl>, Strumigenys.louisianae <dbl>,
Tapimoma.sessile <dbl>, Temnothorax.pergandei <dbl>,
Trachymyrmex.septentrionalis <dbl>

The first few columns reflect the experimental design. Ants were sampled during May, August, and September
of 2010 and 2011. Multiple samples were taken from each of several plots. The abundance of each ant species
is recorded in a separate column.

The species column names follow a distinct pattern: “Genus.species”. The first letter of genus is capitalized
and separated from the specific epithet by a period. The seas.code column has a period but it does not
begin with a capital letter.

Wrangle the data

The data are untidy, so pivot the data to a longer format. Your pivot_longer() statement should follow
this framework:

pivot_longer(names_to = "species", values_to = "abundance", matches(regex, ignore.case =
FALSE))

I have given you everything you need except the regex pattern. You have to figure out the pattern to select
all of the species columns. Remember to use two backslashes to escape the period that separates Genus and
species in the column name.

A tibble: 6 x 8
year season seas.code trt plot sample species abundance
<dbl> <chr> <dbl> <chr> <chr> <dbl> <chr> <dbl>
1 2010 May 1 Pre-burn~ 6A 1 Aphaenogaster.treatae 0
2 2010 May 1 Pre-burn~ 6A 1 Brachymyrmex.depilis 1
3 2010 May 1 Pre-burn~ 6A 1 Camponotus.castaneus 0
4 2010 May 1 Pre-burn~ 6A 1 Crematogaster.cerasi 0
5 2010 May 1 Pre-burn~ 6A 1 Crematogaster.lineola~ 2
6 2010 May 1 Pre-burn~ 6A 1 Crematogaster.missuri~ 2

Optional: Use select() to remove season through sample columns. You need only year, species, and
abundance.

This part might be the hardest part of the assignment. Break it down into small chunks. Run the
code without saving the results until you are satisified you have the correct results. Then, save the results to
a variable.

Later, you will plot abundances for each species. The species names are long, which will make the plot
awkward. You will use str_replace and regex patterns to reduce the long species names to eight letter CEP
names. The CEP name is made from the first four letters of the genus and the first four letters of the species.
For example, Mephitis mephitis becomes Mephmeph.

5

https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/make.cepnames
https://www.rdocumentation.org/packages/vegan/versions/2.4-2/topics/make.cepnames
https://animaldiversity.org/accounts/Mephitis_mephitis/

The mutate() framework to use is

mutate(species = str_replace(species, pattern, replacement))

Use (...) to capture and backreference groups. You need to capture two patterns, one for the first four
letters of the genus and one for the first four letters of the species. Use {n} to limit your matches.2

For the genus, you want to capture a pattern in parentheses that starts with an uppercase letter followed by
up to 3 lowercase letters. For the species you want to capture a pattern of the first four lower case letters.

A tibble: 6 x 3
year species abundance
<dbl> <chr> <dbl>
1 2010 Aphatrea 0
2 2010 Bracdepi 1
3 2010 Campcast 0
4 2010 Cremcera 0
5 2010 Cremline 2
6 2010 Cremmiss 2

• Use mutate to turn the year into an order factor with levels “2010” and “2011”. Then, group by year
and species, and summarize the total abundance of each species. sum() will add up the abundance of
each species.

Plot the data

Ants were sampled during 2010 and 2011. When data are sampled across time, you should plot your data
over time to look for changes. Here, you will plot the total abundance of ants for each year. I hope you
thought immediately of producing a dot plot. You probably thought about using facet_wrap on year to
produce two plots. That would work but we can do something better.

We will make a Cleveland dot plot of total abundance of each species, similar to the top figure shown here..
Build the plot from your summary data using the following guide.

• Use the aes aesthetic in ggplot for mapping. Use x = reorder(species, total) to sort the species
order from most to least abundant. total should be on the Y-axis.

• This aes should also include group = species. This will keep the abundance of each year for each
species grouped togehter.

• Add a line geometry layer. You do not need to add aesthetics or anything else to this layer. You may
optionally add color = "gray" but do not put it inside an aesthetic.

• Add a point geometry layer. Add shape = f_year in the aes aesthetic for this layer. (Use the column
name you used for the ordered years; I used f_year). Set the point size to 2, but do this outside of the
aesthetic. This will use a different shape for each year and enlarge the slightly. Ignore the warning.

• Add a coord_flip() layer.

• Add a labs layer that removes the x-axis label and changes the y-axis label to “Total Abundance”.
Also add shape = "Year", which will change the title of the legend.

• Add a theme_minimal() layer. This simplifies the plot.

Your plot should look like this.
2Ideally, you want to use {1,3} or {1,4} to match genera or species names that are fewer than four characters but that is not

an issue here so {3} or {4} works fine. Yes, this is a hint for you, but is not entirely complete for the problem at hand.

6

https://r4ds.had.co.nz/strings.html#grouping-and-backreferences
https://r4ds.had.co.nz/strings.html#repetition
https://uc-r.github.io/cleveland-dot-plots

Neivnigr

Neivopac

Doliplag

Struloui

Tapisess

Nylaterr

Nylatrag

Cremcera

Campcast

Temnperg

Hypoopac

Bracdepi

Doryflav

Tracsept

Aphatrea

Formdolo

Cremmiss

Cremline

Pheimorr

Monomini

Foreprui

0 100 200 300
Total Abundance

Year

2010

2011

Cleveland plots are, in my opinion, one of the first types of plots that should be considered for data
visualization. In this case, though, because we plotted all 21 species, the lower right corner of the plot is a
big empty space. The code below shows you how to make a slope graph. Slope graphs are great a showing
changes for many variables over distinct time periods or other categories. In the example here, I (arbitrarily)
removed species with fewer than 30 total individuals. The plot still needs tweaks but it gives you a sense of
what slope graphs can do. Notice how it leaves less empty space compared to the Cleveland plot.

You do not have to reproduce this code but I encourage you to think about what is happening
at each step.
Code for slope graph
ants_summary %>%

filter(total >= 30) %>% # Arbitrary value
ggplot(aes(x = f_year, y = total, group = species)) +
geom_line(color = "gray") +
geom_point() +
theme_classic() +
geom_text(data = ants_summary %>%

filter(f_year == "2010",
total >= 30),

aes(x = f_year,
y = total,
label = species,
fontface = "italic"),

hjust = 1.1) +
geom_text(data = ants_summary %>%

filter(f_year == "2011",
total >= 30),

7

https://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0003nk
http://charliepark.org/slopegraphs/
http://charliepark.org/slopegraphs/

aes(x = f_year,
y = total,
label = species,
fontface = "italic"),

hjust = -0.1) +
labs(x = NULL,

y = "Abundance") +
theme(legend.position = "none") +
scale_x_discrete(expand = c(0.2, 0.02))

Formdolo
Cremmiss

Cremline

Monomini

Pheimorr

Foreprui

Cremmiss

Cremline

Pheimorr

ForepruiMonomini

100

200

300

2010 2011

A
bu

nd
an

ce

Part 3: Featuring Phlox Flowers

Landis et al. 2018 studied how the interaction of flower traits and pollinators influenced the evolution of
flowering plants in the family Polomoniaceae (phloxes).

For this part, you will import and wrangle to separate files, and then join them together into a single data
file for plotting.

Import and wrangle the first data set

• Import flower_size.csv

• Filter out rows where Flower number is not NA.

8

https://www.sciencedirect.com/science/article/pii/S1055790318301519?via%3Dihub
https://en.wikipedia.org/wiki/Polemoniaceae

• Select the “Species”, “Corolla length (cm)”, and “Corolla width throat (cm)” columns. Make the
column names syntactic, either by renaming them as part of the select() function (best) or by using
rename() (acceptable).

A tibble: 6 x 3
species cor_length throat_width
<chr> <dbl> <dbl>
1 Acanthogilia gloriosa 3.55 0.393
2 Acanthogilia gloriosa 3.70 0.455
3 Acanthogilia gloriosa 2.66 0.37
4 Acanthogilia gloriosa 2.87 0.375
5 Aliciella caespitosa 1.65 0.241
6 Aliciella caespitosa 1.66 0.148

• Use separate to separate the species column into genus and species columns, dropping everything
else. Notice I used lower case letters for genus and species columns. I’ll do that again on the second
data set.

A tibble: 6 x 4
genus species cor_length throat_width
<chr> <chr> <dbl> <dbl>
1 Acanthogilia gloriosa 3.55 0.393
2 Acanthogilia gloriosa 3.70 0.455
3 Acanthogilia gloriosa 2.66 0.37
4 Acanthogilia gloriosa 2.87 0.375
5 Aliciella caespitosa 1.65 0.241
6 Aliciella caespitosa 1.66 0.148

• Group the data by genus and species, and then use summarize to summarize the mean() and max()
lengths and widths for each species.

Warning in max(throat_width, na.rm = TRUE): no non-missing arguments to max;
returning -Inf

A tibble: 6 x 6
Groups: genus [2]
genus species mean_length mean_width max_length max_width
<chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 Acanthogilia gloriosa 3.20 0.398 3.70 0.455
2 Aliciella caespitosa 1.73 0.197 1.88 0.241
3 Aliciella formosa 2.12 0.297 2.24 0.386
4 Aliciella haydenii 1.58 0.209 2.21 0.321
5 Aliciella heterostyla 1.11 0.145 1.47 0.184
6 Aliciella hutchinsifolia 0.818 0.158 0.957 0.272

Import and wrangle the second data set.

The second data set lists many of the same species as the first data set. Where known, flower color, and
pollination syndrome are include. The syndrome tells whether the species is self-pollinating (“autogamous”)
or is pollinated by an animal (bees, hummingbirds, etc.) are included. For this analysis, you will use the only
the Species and Pollinator columns.

• Import flower_pollinators.csv into a variable called pollinators_raw.

• Use select() to remove columns that start with “Source” and to remove the Color column.

• Use filter() to remove rows where Pollinator is NA.

9

• Use separate() as you did above to separate Species into genus and species columns. Again, I used
lower case letters for genus and species.

• Save these last three steps in a variable called pollinators.

A tibble: 6 x 3
genus species Pollinator
<chr> <chr> <chr>
1 Acanthogilia gloriosa hummingbird
2 Aliciella caespitosa hummingbird
3 Aliciella hutchinsifolia autogamous
4 Aliciella leptomeria autogamous
5 Aliciella micromeria autogamous
6 Aliciella pinnatifida bee

Some species of flowers have multiple pollinators. More than one pollinator may be listed, in the form
of “bee, beefly, butterfly” or “bees primary, hawkmoths secondary” or similar. We will assume that the
pollinator listed first is the major pollinator and discard the others. The first pollinator is separated from
other pollinators by either a comma or a space.

• Use separate() to separate the first pollinator from all other words. The sep argument must be a
regex pattern that finds either a comma or a space. Save the result in a column called Syndrome.

A tibble: 6 x 3
genus species Syndrome
<chr> <chr> <chr>
1 Acanthogilia gloriosa hummingbird
2 Aliciella caespitosa hummingbird
3 Aliciella hutchinsifolia autogamous
4 Aliciella leptomeria autogamous
5 Aliciella micromeria autogamous
6 Aliciella pinnatifida bee

Join the datasets

You have two separate tibbles. The flower_size_summary tibble has 6 rows. The pollinators tibble has 3
rows. We want to make a phlox data set using an inner_join so that only species found in the both data
sets are included. Species that do not have pollinator data will not be included.

• Use inner_join to join the smaller data set to the larger set. As long as your column names for genus
and species are identical in both tibbles (e.g., genus and species), the join function will automatically
match both columns when merging the data.

A tibble: 6 x 7
Groups: genus [2]
genus species mean_length mean_width max_length max_width Syndrome
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Acanthogi~ gloriosa 3.20 0.398 3.70 0.455 hummingbi~
2 Aliciella caespitosa 1.73 0.197 1.88 0.241 hummingbi~
3 Aliciella hutchinsifo~ 0.818 0.158 0.957 0.272 autogamous
4 Aliciella leptomeria 0.518 0.0963 0.731 0.141 autogamous
5 Aliciella micromeria 0.213 0.0427 0.224 0.049 autogamous
6 Aliciella pinnatifida 0.609 0.162 0.666 0.196 bee

Stage, commit, and push.

10

https://www.youtube.com/watch?v=b2VR9lEq5YA

Plotting

The data are now ready for plotting. You will make several variations of the same graph, slowly improving it.
The goal is to show you a typical work flow, as you think about the best way to present the data. These
steps are representative but not definitive. Each situation is unique.

• Make a scatterplot to show the relationship between mean_length (x-axis) and mean_width (y-axis).
Color the points by Syndrome.

0

1

2

3

0 2 4 6
Mean length

M
ea

n
w

id
th

Syndrome

autogamous

bat

bee

beefly

bees

beetle

beetles

butterfly

flies

hawkmoth

hummingbird

The legend lists “bee” and “bees”, and “beetle” and “beetles”. They were not coded consistently in the
original data set. They need to be fixed.

• Use mutate with str_replace() and regex patterns to replace all occurences of “beetle” with “beetles,”
and “bee” with “bees”. Be careful. If you don’t do this right, then you could end up with “beetless”.
Make use of the $ match character.

• Replot your results once you are sure you replaced the names correctly.

11

0

1

2

3

0 2 4 6
Mean length

M
ea

n
w

id
th

Syndrome

autogamous

bat

beefly

bees

beetles

butterfly

flies

hawkmoth

hummingbird

The bees and beetles problem is fixed but that is still a long list of pollination syndromes. If you run the
following code, you see that there are not many species that are pollinated by bats, beetles, or flies.
phlox %>%

group_by(Syndrome) %>%
count(Syndrome)

A tibble: 9 x 2
Groups: Syndrome [9]
Syndrome n
<chr> <int>
1 autogamous 55
2 bat 4
3 beefly 17
4 bees 41
5 beetles 3
6 butterfly 24
7 flies 7
8 hawkmoth 10
9 hummingbird 19

Bats are unusual pollinators (relative to other species on the list) so you want to keep them separate. You
decide to lump beetles and flies together as other insects.

• Once again, use mutate() with str_replace and a regex pattern to replace all instances of “beetles”
or “flies” with “other insects”.

• Plot the results again.

12

0

1

2

3

0 2 4 6
Mean length

M
ea

n
w

id
th

Syndrome

autogamous

bat

beefly

bees

butterfly

hawkmoth

hummingbird

other insects

Better but still not ideal. You decide you want to keep “autogamous” as a distinct sydrome but you want to
group the animal pollinators into “Mammal”, “Bird”, and “Insect”.

• Use mutate and case_when to create a new column called syndrome_group and to change autogamous
to Autogamous (upper case A), bat to Mammal, hummingbird to Bird, and everything else to Insect.
Creating a new column would allow you to access the individual syndromes for future plots, when
necessary.

• Replot the results.

A tibble: 6 x 8
Groups: genus [2]
genus species mean_length mean_width max_length max_width Syndrome
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 Acan~ glorio~ 3.20 0.398 3.70 0.455 humming~
2 Alic~ caespi~ 1.73 0.197 1.88 0.241 humming~
3 Alic~ hutchi~ 0.818 0.158 0.957 0.272 autogam~
4 Alic~ leptom~ 0.518 0.0963 0.731 0.141 autogam~
5 Alic~ microm~ 0.213 0.0427 0.224 0.049 autogam~
6 Alic~ pinnat~ 0.609 0.162 0.666 0.196 bees
... with 1 more variable: syndrome_group <chr>

13

0

1

2

3

0 2 4 6
Mean length

M
ea

n
w

id
th

Syndrome

Autogamous

Bird

Insect

Mammal

The patterns in the data are easier to see. Large flowers tend to be pollinated by large animals. The smallest
flowers tend to be self-pollinating, with the exception of the two large, autogamous species.

Highlighting groups with gghighlight

The different pollination syndromes can be distinguished through the use of colors. You can also highlight one
or more groups with the gghighlight package. gghighlight() will highlight groups based on your logical
criteria. The other groups are automatically given a light shade of gray, although this can be customized.

gghighlight works as a layer added to your ggplot. The basic format for adding a gghighlight layer is:

For example, if I want to highlight just the insect syndrome group, I add the line gghighlight(syndrome_group
== "Insect") to the ggplot commands. Note that you still need to use color mapping in your geom_point
layer so that gghighlight can properly highlight your group of interest.

Notice that the legend went away. This is a default behavior of gghighlight which can be overridden by
adding the use_direct_label = FALSE argument to gghighlight(). This brings back the legend with only
the highlighted group listed.

Read through the gghighlight vignette to learn more about how to use it.

Change the above plot so that it highlights both the mammal and bird syndrome groups. Hint: |.

For the rest of this assignment, do not use gghighlight().

• Stage, commit, push.

14

https://cran.r-project.org/web/packages/gghighlight/vignettes/gghighlight.html

Other improvements: colors and themes

One of the first things I change in a plot is default colors (when colors are needed). The default colors used
by ggplot are carefully chosen so that they do not emphasize some data over others and can be distinguished
by people with the most common forms of color blindness. These qualities are very important when using
colors in figures, but I am not a particular fan of the default ggplot colors.

Other color sets are available with the desirable qualities of even emphasis and distinguishability by people
with different visual abilities.

Dr. Cynthia Brewer developed several color palettes that are useful for plotting. The palettes were developing
for cartography but some qualitative palettes work well with ggplot. Her palettes are available via the
RColorBrewer package. Dr. Simon Garnier and colleages developed another set of palettes available via the
viridis package.

For plots that use discrete categories like the pollination syndromes, I prefer using the brewer palettes. You
can see the available palettes in the last page of this color cheatsheet.

You can access the brewer palettes by adding a scale_color_brewer layer like that shown here. I like the
“Dark2” and “Set1” palettes but you should try different qualitative palettes to find what appeals to you. You
should also try the diverging and sequential palettes to see why you should not use them for categorical data.
phlox %>%

ggplot() +
geom_point(aes(x = max_length,

y = max_width,
color = syndrome_group)) +

scale_color_viridis_d(option = "viridis")
scale_color_brewer(type = "qual", palette = "Dark2") +
labs(x = "Mean Length (cm)",

y = "Mean Width (cm)",
color = "Syndrome")

15

http://personal.psu.edu/cab38/
http://colorbrewer2.org/
https://biology.njit.edu/faculty/garnier
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf

0

1

2

3

4

0 2 4 6
Mean Length (cm)

M
ea

n
W

id
th

 (
cm

) Syndrome

Autogamous

Bird

Insect

Mammal

You can access the discrete viridis palettes using scale_color_viridis_d (use _c instead of _d to access the
continuous palettes). Replace scale_color_brewer with scale_color_viridis_d and try different options,
like “magma”, “inferno”, and “plasma”. For me, the viridis palettes include one color that is very hard to see
in a discrete setting. The viridis palettes work well for maps, which you will see in a later assignment.

Shapes are another way of distinguishing categorical data. Here, I use four of the “fillable” shapes available
in R. You can change the fill color but leave that border black. That allows even light colors like yellow to
stand out from the background.

To change the fill color with the brewer or viridis palettes, you have to change scale_color_... to
scale_fill_..., like that shown below. You can also use scale_fill_manual and specify your own colors,
as shown below using official Southeast colors. Choose custom colors carefully because you must ensure they
have equal emphasis and can be distinguished by as many people as possible.
Custom color palette, using
Southeast Red, Gum Tree, Fountain, Copper
semo_palette <- c("#C8102E", "#DBE245", "#71C5E8", "#B07C57")

phlox %>%
ggplot() +
geom_point(aes(x = mean_length,

y = mean_width,
shape = syndrome_group,
fill = syndrome_group)) +

scale_shape_manual(values = c(22:25)) +
scale_fill_brewer(palette = "Dark2")
scale_fill_viridis_d(option = "viridis")

scale_fill_manual(values = semo_palette) +

16

https://semo.edu/university-marketing/brand-central/palette.html

labs(x = "Mean Length (cm)",
y = "Mean Width (cm)",
shape = "Syndrome",
fill = "Syndrome")

0

1

2

3

0 2 4 6
Mean Length (cm)

M
ea

n
W

id
th

 (
cm

) Syndrome

Autogamous

Bird

Insect

Mammal

ggplot is highly customizable so you can make plots to suit very specific needs. ggplot includes several
themes that change the overall look of the plot. Themes that I find useful are theme_minimal, theme_bw and
theme_classic. The ggthemes library includes many additional themes. As I mentioned early in the course,
I like the philosphy of Edward Tufte. Here is our plot using theme_tufte(), the Dark2 brewer palette, size
= 2 to enlarge the plotted points a bit, and some font size customization to increase slightly the fonts used
for the axis titles and the numbers at the tick marks.

Note: Some themes (I think) set default colors. If you add a theme layer after using one of the scale
options, it is possible that your color choices will be overridden. Its a good idea to change the theme, and
then make your color and other changes.
phlox %>%

ggplot() +
geom_point(aes(x = mean_length,

y = mean_width,
shape = syndrome_group,
fill = syndrome_group),

size = 2) +
labs(shape = "Syndrome",

fill = "Syndrome",
x = "Mean Length (cm)",
y = "Mean Width (cm)") +

theme_tufte() +

17

https://www.edwardtufte.com/tufte/

scale_shape_manual(values = c(22:25)) +
scale_fill_brewer(palette = "Dark2") +
theme(axis.text = element_text(size = 10),

axis.title = element_text(size = 12))

0

1

2

3

0 2 4 6
Mean Length (cm)

M
ea

n
W

id
th

 (
cm

)

Syndrome

Autogamous

Bird

Insect

Mammal

• Stage, commit, and push.

Part 4: Customize your plots

The assignment and examples above plotted mean width against mean length. I want you to make four
scatterplots of max width as a function of max length. I want you to try different themes and palettes. Each
plot should use a different combination of theme and color palettes.

For this exercise, I don’t care about color choices. You can play with the brewer and viridis palettes, make
your own, or even try one of the dozens of other palettes available via different packages. Any Wes Anderson
fans? Pirate fans?

For fun, try to make at least one really good looking figure and one obnoxiously ugly one.

-Stage, commit, push.

et Vóila

18

https://github.com/EmilHvitfeldt/r-color-palettes
https://github.com/karthik/wesanderson
https://github.com/ndphillips/yarrr

	Preparation
	Part 1: DNA strings
	Import the data
	From many strings to one
	Sequence analysis: find the promoter region

	Part 2: Ants
	Import the data
	Wrangle the data
	Plot the data
	Part 3: Featuring Phlox Flowers
	Import and wrangle the first data set
	Import and wrangle the second data set.
	Join the datasets
	Plotting
	Highlighting groups with gghighlight
	Other improvements: colors and themes

	Part 4: Customize your plots

