
HW 14: Maps
Graphical Analysis of Biological Data

By the end of this assignment, you should be able to achieve the following tasks in R:

• use R notebooks and R markdown;
• insert, write, and evaluate code chucks;
• use pipes;
• use ggplot2 to

– create outline and filled maps at different scales,
– obtain data from external databases, and
– plot sample locations and distributions on the maps;

• customize plots to improve visualization;
• use a typical workflow to wrangle and plot data; and
• confidently stage, commit, and push with Git.

These achievements belong to Learning Outcomes 2, 3, 4, 5, 6.

By the end of this assignment, you should demonstrate an ability to

Click on any blue text to visit the external website.

This assignment has four parts.

Note: If you cannot get your code to run, open a new issue in the public discussion forum,, and describe the
problem. Include the code that is not working and also tell us what you have tried.

Preparation

• No reading, no cheatsheets. Just pure mapping pleasure.

• Open your .Rproj project file in RStudio.

• Right-click and download hw14_data.zip. Unzip the file and move all of the data files into your data
folder.

Optional: If you want to keep your data folder a little more organized, create a folder called shape_files
in your data folder. Move all of the files that begin with cb_ into the shape_files folder. *Do not
put any other data files in that folder. Then, in Part 2, use here::here("data/shape_files",
""cb_2017_us_state_500k.shp") when it comes time to import the shape files. You’ll see where I
did this in my code. If you don’t want to do this, put all files in your data folder and delete the
/shape_files from the here() argument.

• Create an hw14 folder inside the same folder as your project file.

• Create a new notebook file and save it as <lastname>_hw14.Rmd inside your hw10 folder.

• Add the YAML header as usual.

• Change the Knit directory to “Project Directory”.

• Install these packages. Do not install packages in a code chunk. Run the code in the console
or Tools > Install Packages... Including it in a code chunk would try to install the package every
time you run the code. But then, you know that by now, right?
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– maptools
– maps
– map_data
– rgeos
– sp
– sf
– ggmap
– raster
– marmap

• Load these libraries, in the order shown. tidyverse must be loaded after raster so you can use its
select() function. Note: Do not load all of the packages you just installed Some, like raster and sp
will be accessed when needed by some functions.

library(here)
library(raster)
library(sf)
library(tidyverse)
library(ggthemes)
library(patchwork)
library(maptools)
library(ggmap)
library(marmap)

• Remember to following the code formatting guidelines.

• Commit early. Commit often. Push regularly.

• This assignment is part tutorial and part assignment I will give you an example, which you must run,
and then you will do something similar as instructed. Read the instructions carefully. But then you
knew that, right?

An important part of data visualization is not showing your data but showing were your data are from. You
might need to show your sampling locations, the distribution of species, or demographic data for a population
of people. You will do all of these in this assignment.

Part 1: Outline maps

Outline maps show outlines of regions of interest, such as the state boundaries of the U.S. states or the county
boundaries of Missouri. In some cases, one or more regions might be filled to draw attention to a particular
area.

Example: States and counties

I used this code to make a map for a colleague and her graduate student. The map is an outline map of
the U.S. with Missouri filled in black and three other stated filled in gray. The figure was used for a new
distributional record for a species of ant.

This example requires tidyverse, ggthemes, maptools, and patchwork. maptools accesses the maps package,
which is a database of world countries, states, and U.S. county maps. map_data is a ggplot2 function that
accesses specific maps from the maps database.
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U.S. map I used map_data and also subset to access specific regions (states, in this case) and store the
results in three data frames.
# Outline of the 48 contiguous states
usa <- map_data(map = "state") # Tidyverse or ggplot2 must be loaded

# Outline of just Missouri
us_missouri <- map_data(map = "state",

region = "missouri")

# Outline of Alabama, Florida, Mississippi, and North Carolina
us_other <- subset(x = usa,

subset = region %in% c("alabama",
"florida",
"mississippi",
"north carolina"))

The usa dataframe contains outlines of the 48 contiguous states. You can run str(usa) to see the structure
or head(usa) to see the first few rows of the data. us_missouri contains the outline for the state of Missouri.
us_other is a subset of the usa data set, containing outlines for the four states listed. Note: the region
(state) names are lower case.
# You do not have to include this step in your code.
str(usa)

## 'data.frame': 15537 obs. of 6 variables:
## $ long : num -87.5 -87.5 -87.5 -87.5 -87.6 ...
## $ lat : num 30.4 30.4 30.4 30.3 30.3 ...
## $ group : num 1 1 1 1 1 1 1 1 1 1 ...
## $ order : int 1 2 3 4 5 6 7 8 9 10 ...
## $ region : chr "alabama" "alabama" "alabama" "alabama" ...
## $ subregion: chr NA NA NA NA ...

The map data are pairs of sequential points, along with an order variable. The data are similar to connect
the dots pictures you might have drawn as a child. The numbered points specify the order of connection. Here,
the points of the map data are specified by long (longitude) and lat (latitude). The points are connected in
order by a geom_ploygon layer.

I built the map in this example one layer at a time to show you the steps. When the time comes, you can
plot it all in a single code chunk, like the final step of this example. I built the map up from the bottom
layer, overlaying other layers on top. I plotted the outline of the 48 states last so that the state boundaries
overlay everything else.

The first layer has the four non-Missouri states. The species of ant was known previously from these four
states. The are filled with gray to highlight them without emphasizing them. You can recognize the states
but they are distorted. We will fix the distortion at the very end.
ggplot() +

geom_polygon(data = us_other,
aes(x = long,

y = lat,
group = group),

fill = "gray")
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I added Missouri, filled with black to emphasize it over the other four states.
ggplot() +
geom_polygon(data = us_other,

aes(x = long,
y = lat,
group = group),

fill = "gray") +
geom_polygon(data = us_missouri,

aes(x = long, y = lat,
group = group),

fill = "black")
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Then I added the outline of all 48 states.
ggplot() +

geom_polygon(data = us_other,
aes(x = long,

y = lat,
group = group),

fill = "gray") +
geom_polygon(data = us_missouri,

aes(x = long, y = lat,
group = group),

fill = "black") +
geom_polygon(data = usa,

aes(x=long,
y = lat,
group = group),

fill = NA,
color = "black")
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The map is still distorted and it has the default theme_gray. I replaced the default theme with theme_map()
from the ggthemes package. I also added a coord_fixed layer with a value of 1.3, which sets a fixed ratio
for longitude and latitude. The longitude is fixed at 1.3 times longer than latitude. Coordinates for maps
can be set using more accurate methods but coord_fixed() is OK for a map like this. I saved this plot to
us_map for later plotting with patchwork.
# Add the filled states first so that the black outlines of all
# states are overlaid on top.
us_map <- ggplot() +

geom_polygon(data = us_other,
aes(x = long,

y = lat,
group = group),

fill = "gray") +
geom_polygon(data = us_missouri,

aes(x = long, y = lat,
group = group),

fill = "black") +
geom_polygon(data = usa,

aes(x=long,
y = lat,
group = group),

fill = NA,
color = "black") +

theme_map() +
coord_fixed(1.3)
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us_map

Missouri map I then built the Missouri map, highlighting Scott County to show the county where the
ant species was collected for the first time ever. I used the same steps as above. I created two objects, one
with the polygons for all Missouri counties and one with just the the Scott County polygon. I add the Scott
County layer first, then the outline of all the counties. We will do this all in a single chunk.
missouri <- map_data("county", "missouri")
mo_scott <- subset(missouri, subregion %in% c("scott"))

mo_map <- ggplot() +
geom_polygon(data = missouri, aes(x=long, y = lat, group = group), fill = NA, color = "black") +
geom_polygon(data = mo_scott, aes(x = long, y = lat, group = group), fill = "black") +
theme_map() +
coord_fixed(1.3)

mo_map
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I now had a us_map object and a mo_map object. The final step was to put them side-by-side using the
patchwork package. I used ncol = 2 but you could also use nrow = 1. The widths argument specifies how
wide each column should be. I tried several values, deciding finally that the left column with the U.S. map
should be 1.5 times wider than the right column with the Missouri map.
us_map + mo_map + plot_layout(ncol = 2, widths = c(1.5,1))

Stage, commit, and push.

Outline maps: your turn.

Your goal is to make an outline map similar to the above example, but with the following requirements.

• The U.S. map should highlight in black the state of your birth.

• The state map should highlight in black the county of your birth.

• The state map should also show in gray two additional counties, chosen based on the initials of your
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first, middle and last names, assuming you have a middle name and are not a famous Brazilian football
player.

For the non-birth counties, pick two county names that correspond with some combination of initials from
your first, middle, and last names. For example, I was born in Missouri. In addition to my birth county
(St. Louis), I could choose

• Macon and Schuyler,
• Madison and Taney,
• Shelby and Texas, or
• any other combination of counties that begin with M, S, or T.

If one of your names begins with a letter that does not match a county in your state (e.g., Ellen or Zachary
would not match in Missouri), use the second letter of that name (e.g., L or A for Ellen and Zachary).

Wikipedia has lists of counties for each state.

Part 2: Choropleth maps

Choropleth maps are similar to outline maps but the regions are filled based on a statistic, such as average
crime rate or per capita disease rate.

Example: Skin cancer mortality in the U.S.

If you haven’t already, load these packages.
library(sf)
library(tidyverse)

First, we’re going to import the skin cancer data that will form the basis of the fill colors of map. The data
is a series of columns separated by white space. I could use the read_fwf() function but we can use the
white space as a deliminter in the read_delim function.
skin_cancer_raw <-

read_delim(file = here::here("data","skin_cancer.txt"),
delim = " ",
skip = 7,
trim_ws = TRUE)

Next, we have to do some data wrangling to add spaces to the two-word state names. We also have to correct
a typo on the data (MewYork). The state names have to be corrected because they have to match the state
names as spelled in the fips data we imported above
skin_cancer <- skin_cancer_raw %>%

filter(State != "Wash,D.C.") %>%
mutate(State = case_when(

State == "NorthCarolina" ~ "North Carolina",
State == "SouthCarolina" ~ "South Carolina",
State == "NorthDakota" ~ "North Dakota",
State == "SouthDakota" ~ "South Dakota",
State == "NewHampshire" ~ "New Hampshire",
State == "NewJersey" ~ "New Jersey",
State == "NewMexico" ~ "New Mexico",
State == "MewYork" ~ "New York", # Data has MewYork typo
State == "RhodeIsland" ~ "Rhode Island",
State == "WestVirginia" ~ "West Virginia",
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TRUE ~ State
))

We’re going to calculate the skin cancer mortality rate relative to the mean rate. Negative numbers indicate
states with below average mortality. Positive numbers are states with above average mortality. First, we
calculate mean_mort, which is the average mortality for all 48 states. We then use mutate() to add a
relative_mort column, substracting the Mort column from the mean_mort average. We’re saving this
adjusted data in a new tibble called skin_cancer_adj.
mean_mort <- mean(skin_cancer$Mort)

skin_cancer_adj <- skin_cancer %>%
mutate(relative_mort = Mort - mean_mort)

Important note: The steps outlined from here through the plotting of the map, except for the left_join
below, will be exactly the same in the Your turn section. You’ll have to left join with the Lyme Disease data
given to you.

We need a vector of the lower 48 states. We’ll use the vector as a filter to remove Alaska, Hawaii, the District
of Columbia, and U.S. territories from our shapefile.
# Used to trim Alaska, Hawaii, and territories from the shapefile.
lower_48 <- c("Alabama","Arizona","Arkansas","California","Colorado","Connecticut","Delaware","Florida","Georgia","Idaho","Illinois","Indiana","Iowa","Kansas","Kentucky","Louisiana","Maine","Maryland","Massachusetts","Michigan","Minnesota","Mississippi","Missouri","Montana","Nebraska","Nevada","New Hampshire","New Jersey","New Mexico","New York","North Carolina","North Dakota","Ohio","Oklahoma","Oregon","Pennsylvania","Rhode Island","South Carolina","South Dakota","Tennessee","Texas","Utah","Vermont","Virginia","Washington","West Virginia","Wisconsin","Wyoming")

Next, we use the st_read function from the sf package to read the shape file. Shape files can contain a wide
range of geographic information, including the shapes of countries and states. Shape files are widely used in
geographic information systems (GIS).

Filter keeps only states in the states object that listed in the lower_48 vector. Any region that does not
match is removed. states_df is the tibble with the state shapes we will plot.
states <- st_read(here::here("data/shape_files", "cb_2017_us_state_500k.shp"),

stringsAsFactors = TRUE)

## Reading layer `cb_2017_us_state_500k' from data source `/Users/goby/Documents/teach/485_repo/SEMO-GABD.github.io/data/shape_files/cb_2017_us_state_500k.shp' using driver `ESRI Shapefile'
## Simple feature collection with 56 features and 9 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -179.1489 ymin: -14.5487 xmax: 179.7785 ymax: 71.36516
## geographic CRS: NAD83
states_df <- states %>%

dplyr::filter(NAME %in% lower_48)

Each state (and U.S. territory) is given a numerical FIPS code. In a moment, we’re going to import the list
of state FIPS. However, we will need to use the FIPS as factors. The states_df tibble has a column called
STATEFP with the state FIPS already factored. Shown here,
str(states_df$STATEFP)

## Factor w/ 56 levels "01","02","04",..: 49 14 21 13 46 7 32 31 28 39 ...

The levels() function returns the levels associated with a factored variable. We’ll capture those levels,
which we then use to factor the FIPS in the imported data.
# Capture the FIPS levels from states_df
# Use to factor the FIPS and state names in the next step.
state_levels <- levels(states_df$STATEFP)
name_levels <- levels(states_df$NAME)
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Now we import the state FIPS, remove an unneeded column, rename the FIPS column to STATEFP, then
use mutate() to change the STATEFP column to an unordered factor.

Note the use of dplyr::select(-abbr). The raster package also has a function called select() that can
conflict with the select function from dplyr, one of the tidyverse packages. The dplyr:: part of the
code tells R to use select() from dplyr.
library(tidyverse)
fips <- read_csv(here::here("data", "state_fips.csv")) %>%

dplyr::select(-abbr) %>%
rename(STATEFP = FIPS) %>%
mutate(STATEFP = factor(STATEFP, levels = state_levels))

Next, we use two left_join() calls to merge the data into a single file. The first left join matches the state
names and adds the state FIPS column (STATEFP) to our adjusted skin cancer data. That STATEFP column
then matches the STATEFP column in the states_df tibble. We now have all of the data in a single tibble.

Note: You’ll follow these steps in the Your turn section below but you will use the Lyme disease data instead
of the skin cancer data.
skin_cancer_adj <- left_join(skin_cancer_adj, fips)

states_df <- left_join(states_df, skin_cancer_adj)

That was fair amount of work but we’re now ready to plot the map. Plotting uses a new geom and a new
layertype from ggplot. geom_sf is a geom that knows how to plot sf data, which is one of the classes of our
states_df tibble (run class(states_df) from the console). You’ve seen the viridis scales before. We’re
using the continuous scale for the relative mortality rate, with the inferno color palette. The coord_sf
layer will give a slight curve to the plot to mimic the curvature of Earth. theme_bw() is one of the basic
themes that comes with ggplot2. You could also use theme_map() from the ggthemes package. Finally, the
theme(legend.position = "bottom") puts the legend horizontally at the bottom of the map rather than
vertically on the side. You can try both to see which you prefer.
ggplot(states_df) +

geom_sf(aes(fill = relative_mort)) +
scale_fill_viridis_c(name = "Skin Cancer,\nRelative Mortality",

option = "inferno") +
coord_sf(crs = st_crs(5070)) +
theme_bw() +
theme(legend.position = "bottom")
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The southern states have a skin cancer mortality higher than average while the northern states have a lower
than average mortality rate.

Choropleth map: your turn

Make a choropleth map for lyme disease. The data have the number of cases of lyme disease reported to the
Centers for Disease Control between 2007-2017. The year 2017 has two columns, confirmed and probable.
We’ll treat the probables as confirmed.

Do the following steps. You only need to do these steps. As long as you didn’t quit RStudio and close your
notebook, you do not need to repeat all of the steps from above to import the shape files, etc.. You just need
to wrangle the data needed to produce the fill color and plot the map.

• Import the csv data. The spreadsheet uses - for missing data, which you’ll have to convert to NA during
import. You may have to do one or two other things during import, too. Inspect your data!

• Create a new column called 2017 that adds together 2017_Confirmed and 2017_Probable.

• Remove the 2017_Confirmed and 2017_Probable columns. Once added together, you don’t need them
and they’ll get in the way of the next step.

• The data are not tidy so you will need to pivot_longer to put the years into a single column. Use
appropriate names for names_to and values_to arguments.

• group_by state and use summarize() to calculate mean number of each cases, and then convert the
mean to the log (base 10) using the log10() function. This converts the values to a reasonable scale
for display.

• Use left_join as you did above to merge the fips data frame to your lyme disease data. Use
left_join again to merge your lyme data to the states_df data.
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• Plot your choropleth map using the same ggplot code for the cancer map but

– Change aes(file = ...) for geom_sf to the column with the log of your mean lyme cases.

– Change the name of the scale to something appropriate. You can play with other viridis palatte
options or even try other continuous scales if you want.

– For the scale_fill_viris_c() layer, I suggest adding labels = c("<1", "10", "100",
"1000", "5000") as an argument. This makes it easier to match the colors to actual values
rather than the log values.

If successful, your map should look something like this:
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Part 3: Dot distribution maps

Example: Distribution of Gigantopithecus and Ursus

Dot distribution maps show locations where a species has been sampled. This example is based on a
publication by Lozier et al. 2009. They used ecological niche modeling to predict the distribution of Bigfoot.
Srsly.

The Bigfoot data were used to make some points about potential pitfalls of the technique, while also showing
how well the “niche” of Bigfoot matches the “niche” of black bears Ursus americanus.

The bigfoot data were obtained from the Bigfoot Field Researchers Organization. Srsly. Only Class A
sightings were used. (I still have some standards.) The black bear data were obtained from the Global
Biodiversity Information Facility.

If you haven’t already, right-click and save bigfoot.csv and bears.csv to your data folder.
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This example uses the following packages. If you loaded them for Part 1, then you do not have to load them
now unless you quit and have now returned to continue working.
library(raster) # Load before tidyverse.
library(tidyverse)
library(ggthemes)
library(ggmap)

First, define some global vars that restricts the data to minimum and maximum latitudes and longitudes. We
will also set the seed used by the random number generator.

Important: Software like R can generate “random” numbers but they are pseudorandom numbers that only
approximate random numbers. Pseudorandom numbers are generated from a “seed”, usually based on the
computer’s internal clock. However, if the seed is set to a fixed number, the “random” can be accurately
replicated.

Setting the seed is necessary for reproducibility. Here, I used R’s setseed() function so that my “random”
sampling of bigfoot data from a much larger data set is reproducible. I used a smaller subset of data to keep
the map from being too overcrowded with points. Any number can be used for the seed. I used a childhood
phone number. If you use the same number, you will get the same results as me.
# Global vars -------------------------------------------------------------

# Restrict the map to the western US.
min_long <- -126
max_long <- -104
min_lat <- 31
max_lat <- 50

set.seed(9618973)

Load the Bigfoot data. The Bigfoot data has the longitude and latitude for “observations” across North
America. The data set is large so I used the sample() function to “randomly” sample 300 records. I will get
the same 300 records with every sample, as long as I do not change the seed. If I change the seed, then the
300 records will not all be the same.

I filtered the data to restrict the distribution to the longitude and latitude variables defined above. I sampled
300 records, changed the name to the non-scientific genus Gigantopithecus, and then selected only the name,
longitude and latitude columns. The sample function is affected by setseed.

Note: the file paths assume that you have a data folder at the same level as your Rproj folder, and that the
csv files are in that folder, per previous instructions.

Note: You may have to use dplyr::select() for the same reason you had to use here::here(): package
conflicts.
# Bigfoot data ------------------------------------------------------------

bigfoot <- read_csv(here::here("data", "bigfoot.csv"))

bigfoot <- bigfoot %>%
filter(long >= min_long & long <= max_long,

lat >= min_lat & lat <= max_lat) %>%
sample_n(300) %>%
mutate(name = "Gigantopithecus") %>%
dplyr::select(name, long, lat)

Next, read in the bears.csv data. I previously wrangled the data so it has only the lontitude and latitude in
the range defined above.
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# Bear data ---------------------------------------------------------------

bears <- read_csv(here::here("data", "bears.csv"))

both_species <- bind_rows(bigfoot, bears)

head(both_species)

## # A tibble: 6 x 3
## name long lat
## <chr> <dbl> <dbl>
## 1 Gigantopithecus -123. 42.4
## 2 Gigantopithecus -122. 45.3
## 3 Gigantopithecus -122. 40.8
## 4 Gigantopithecus -122. 40.8
## 5 Gigantopithecus -122. 45.1
## 6 Gigantopithecus -122. 40.9
tail(both_species)

## # A tibble: 6 x 3
## name long lat
## <chr> <dbl> <dbl>
## 1 Ursus americanus -126. 49.2
## 2 Ursus americanus -110. 44.9
## 3 Ursus americanus -119. 34.9
## 4 Ursus americanus -114. 34.6
## 5 Ursus americanus -123. 43.4
## 6 Ursus americanus -125. 49.9

This code gets the terrain map from Stamen Maps (similar to Google Maps but does not require registration).
This will take a few minutes. zoom defines the resolution. The higher the value, the greater the resolution.
Whenever you use this technique, always start with a lower value like 3 or 4. Use a higher value like 7 when
you make your final figure. (The actual final value depends on how large of a geographic area that you need
to cover.)
base = get_stamenmap(bbox = c(min_long,

min_lat,
max_long,
max_lat),

zoom = 4,
maptype = "terrain-background")

ggmap(base)

15

http://maps.stamen.com/#watercolor/12/37.7706/-122.3782


35

40

45

50

−125 −120 −115 −110 −105
lon

la
t

Dark green shows forested areas. The grayer colors show higher elevations.

ggmap uses ggplot2 to plot this layer, so we can store the result into an object and add to it using familiar
geoms. The first layer to add is the Bigfoot data.
base <- ggmap(base)

base + geom_point(data = bigfoot,
aes(x = long,

y = lat))

16



35

40

45

50

−125 −120 −115 −110 −105
lon

la
t

Bigfoot clearly seems to prefer the forested areas, especially around Seattle. In case you are wondering, most
sightings of Bigfoot were recorded before marijuana was legalized in Washington state.

What about black bears?
base + geom_point(data = bears,

aes(x = long,
y = lat))
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Black bears also seem to prefer the woods. Hmmm. . . . The final plot includes both species, from the species
data frame. I used scale_shape_manual to choose fillable shapes. The shapes and fill color are matched by
the aes aesthetic to each species. I ensured only a single legend was used by setting both shape and color to
“Species” in the labs layer. I increased the point size slightly, outsize of aes.
base + geom_point(data = both_species,

aes(x = long,
y = lat,
shape = name,
fill = name),

size = 2) +
scale_shape_manual(values = c(22:23)) +
labs(x = "Longitude",

y = "Latitude",
fill = "Species",
shape = "Species")

18



35

40

45

50

−125 −120 −115 −110 −105
Longitude

La
tit

ud
e Species

Gigantopithecus

Ursus americanus

Distribution map: your turn

Recreate the Bigfoot and Black Bear distribution map but change the setseed number to your last seven digits
of your S0 number. The seed determines the random sample of Bigfoot sightings but the bear distribution
should not change.

Part 4: Bathymetry

Bathymetric maps are maps that show the changes of depth in a body of water. We will use bathymetry in
combination with dot distribution maps. For this example, we will plot the distribution of earthquakes near
the island nation of Fiji.

Example: Fiji earthquakes

Fiji is a group of islands located on the western edge of the Pacific Plate.. The edges of the Pacific plate has
lots of seismic activity, in the form of volcanos and earthquakes. Earthquakes that have occurred around Fiji
since 1964 are recorded in the quakes data set, one of the data sets included with R. The quakes data set
include longitude, latitude, magnitude (strength), and depth.

The amount of data needed to plot bathymetry is large, so some plots will take several seconds
to draw.

This part uses the tidyverse and marmap libraries. If you loaded them for Part 1, you do not need to load
them now unless you quit previously and have returned to finish.
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library(tidyverse)
library(marmap)

As above, I defined global variables with the longitude and latitude range for the map. The bathymetric data
has depth in feet but the quakes data has depths in kilometers, so I converted quake depth to feet.
min_long <- -170
max_long <- 164
min_lat <- -42
max_lat <- -8

# This converts depth in km to depth in feet.
# Necessary because bathymetry data will be in feet
earthquakes <- quakes %>%

mutate(depth = depth * 3280.84)

This chunk obtains the data directly from NOAA. The getNOAA.bathy function retrieves the data from a
NOAA website. The antimeridian = TRUE argument is necessary here because Fiji sits on the 180° meridian
where the longitude changes from East to West. The keep = TRUE argument causes the function to save the
data to a local csv file. In the future, when you run the code, the function will load the data from the file
rather than download it again. If you delete the file, the data will be downloaded and saved again.
# Will auto read the saved file if present.

fiji <- getNOAA.bathy(lon1 = min_long,
lon2 = max_long,
lat1 = min_lat,
lat2 = max_lat,
antimeridian = TRUE,
keep = TRUE)

The marmap package includes an autoplot.bathy() function to automatically plot bathymetric data with
ggplot2, using reasonable default settings. The geom = c("raster", "contour") tells ggplot to use
geom_raster and geom_contour. The size = 0.1 argument specifies the thickness of the contour lines. Try
tweaking this value a little to see how changes affect the appearance of the plot.

Ignore the warning about ignoring the size parameter. It is not actually ignored.
# Could also just use autoplot() without the .bathy extension.
autoplot.bathy(fiji,

geom = c("raster", "contour"),
size = 0.1,
na.rm = TRUE)

## Warning: Ignoring unknown parameters: size

## Warning: Raster pixels are placed at uneven horizontal intervals and will be
## shifted. Consider using geom_tile() instead.
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Very oceanic. I thought the default color gradient was too dark so I used a custom gradient by adding a
scale_fill_gradient2 layer. The low color is used for the greatest depths. I also labeled the x- and y-
axes. Note: I used theme(axis.title.y = ...) to rotate the y-axis label. vjust = 0.5 centers the label
vertically on the axis.
# Using autoplot, which "knows" to use autoplot.bathy
autoplot(fiji,

geom = c("raster","contour"),
size = 0.1,
na.rm = TRUE) +

scale_fill_gradient2(low = "dodgerblue4",
mid = "gainsboro",
high = "darkgreen",
name = "Depth (ft)") +

labs(x = "Longitude",
y = "Latitude") +

theme(axis.title.y = element_text(angle = 0,
vjust = 0.5))

## Warning: Ignoring unknown parameters: size

## Warning: Raster pixels are placed at uneven horizontal intervals and will be
## shifted. Consider using geom_tile() instead.

21



−40

−30

−20

−10

165 170 175 180 185 190
Longitude

Latitude

−10000

−7500

−5000

−2500

0

Depth (ft)

That’s a good start. I saved the autoplot result to an object called base_map, and then add the Fiji
earthquakes data using familiar ggplot layers. I used geom_point to plot the location of each seismic event.
base_map <- autoplot(fiji,

geom = c("raster","contour"),
size = 0.1,
na.rm = TRUE) +

scale_fill_gradient2(low = "dodgerblue4",
mid = "gainsboro",
high = "darkgreen",
name = "Depth (ft)") +

labs(x = "Longitude",
y = "Latitude") +

theme(axis.title.y = element_text(angle = 0,
vjust = 0.5))

## Warning: Ignoring unknown parameters: size
base_map +

geom_point(data = earthquakes,
aes(x = long,

y = lat))

## Warning: Raster pixels are placed at uneven horizontal intervals and will be
## shifted. Consider using geom_tile() instead.
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That’s a lot of earthquakes. The points are rather crowded. I also want to adjust the size of the points to
reflect the magnitude of the each quake. I used the alpha argument to make the points more transparent.
base_map +

geom_point(data = earthquakes,
aes(x = long,

y = lat,
size = mag),

alpha = 0.4)

## Warning: Raster pixels are placed at uneven horizontal intervals and will be
## shifted. Consider using geom_tile() instead.
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Hmm. I thought the points were too large, but I still wanted the point size to reflect magnitude. I used the
scale_size_continuous layer to set the minimum and maximum point sizes used for magnitude. I added
the name argument to name this legend.
base_map +

geom_point(data = earthquakes,
aes(x = long,

y = lat,
size = mag),

alpha = 0.4) +
scale_size_continuous(range = c(0.5,3), name = "Magnitude")

## Warning: Raster pixels are placed at uneven horizontal intervals and will be
## shifted. Consider using geom_tile() instead.
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That’s better. It’s easy to see where the concentration of earthquakes is highest, without overwhelming the
plot.

Stage, commit, push.

Bathymetry: now you try it

• This part uses the tidyverse and marmap libraries. You do not need to load them unless you quit and
have returned to finish up the assignment.

• Set the following global variables:

– min_long: -90
– max_long: -58
– min_lat: 8
– max_lat: 28

Load blennies.csv into a blennies object. Use getNOAA.bathy() function like we did in the Fiji earthquakes
example to get the bathymetric data for the Caribbean Sea.

• Set antimeridian to FALSE.

• Set keep = TRUE to that the data are saved after the first run.

• Save the results to a carib_sea object.

Use autoplot to plot the base bathymetric map. Add a labs() layer to label the x- and y- axes as “Longitude”
and “Latitude”, respectively. Replace the scale_fill_gradient2 layer with this layer.

scale_fill_etopo(guide = FALSE)
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Once you are happy with the results, save the base map to a base_map object.

Add the blennies

Add a point layer to show the distribution of the blennies, with these parameters.

• Map shape to name in the aesthetics layer.

• Use fillable shapes 21-23.

• Specify a color for the fill. I used white. You can use other colors but be sure the colors contrast well
with the background.

• Increase the point size a bit. Try a range between 2-4. You can use decimal point sizes, like 2.8 or 3.1.
Find a value that you think helps the points to stand out without overwhelming the plot.

Note: for the best sense of the final point size, click on the small “Show in New Window” button just
above the top right of the plot in your notebook. The points tend to look a little large in the small
plots in your notebook.

• Change the legend name to “Species”.

• Add theme(legend.position = "bottom") to put the legend below the map.

• Figure out how to add a theme element to italicize the species names in the legend.

Your final plot should look like this, although your point size and fill colors may vary.
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Stage, commit, push.

26



Full code for the Fiji Quakes

This is for reference only. You do not have to run this code.

This code builds the Fiji earthquakes plot from scratch using ggplot2. The autoplot() function of marmap
works well but building the map up by individual layers gives you more control of the details.

The bathymetry data must be converted to a dataframe object, which is done here using fortify, a function
in ggplot2. In this case, fortify creates an x column with longitude, a y column with latitude, and a z
column with depth. Depth values are negative to show depth below the surface (z = 0).
fiji <- getNOAA.bathy(lon1 = -170,

lon2 = 164,
lat1 = -42,
lat2 = -8,
antimeridian = TRUE,
keep = TRUE)

# Convert the bathymetry data to a data frame.
fiji_df = fortify(fiji)

ggplot(fiji_df,
aes(x = x,

y = y,
z = z,
fill = z)) +

geom_tile() +
geom_contour(data = NULL, lwd = 0.1, color = "gray30") +
geom_contour(colour = "black",

linetype = "solid",
size = 0.3,
breaks = 0, alpha = 1) +

scale_fill_gradient2(low = "dodgerblue4",
mid = "gainsboro",
high = "darkgreen", name = "Depth") +

geom_point(data = earthquakes,
inherit.aes = FALSE,
aes(x = long,

y = lat,
size = mag),

alpha = 0.4) +
coord_quickmap() +
theme_minimal() +
scale_size_continuous(range = c(0.5,3)) +
labs(size = "Magnitude",

color = "Magnitude",
x = "Longitude",
y = "Latitude")
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